مسلمانان علم ریاضی ، خاصه جبر و مقابله را به گونه ای پیشرفت دادند که می توان گفت آنان موجد این علم می باشند.اگر اصول و مبادی علم ریاضیات قبل از اسلام در دنیا وجود داشت ، لکن مسلمین انقلابی در آن ایجاد کردند و از جمله اینکه قبل از دیگران جبر و مقابله را در هندسه بکار بردند.
جبر و مقابله تا بدانجا مورد توجه آنان بود که مأمون عباسی در قرن سوم هجری ( قرن نهم میلادی ) به ابومحمد بن موسی ، یکی از ریاضیدانهای دربار خود امر کرد کتاب سادة عام الفهمی در جبر و مقابله تآلیف نماید.
محمدبن موسی ( فوت در سال 257 یا 259 هـ. ق. ) یکی از سه برادر دانشمندی بود که به بنوموسی شهرت داشتند.در نیمةدوم قرن سوم هجری ثابت بن قره( 221-228 هـ. ق. )طبیب ،ریاضیدان و منجم حوزه علمی بغداد خدمات بسیاری را در زمینه ترجمه کتابهای علمی از زبانهای سریانی و یونانی به زبان عربی انجام داد.
وی دارالترجمه ای تأسیس کرد که بسیاری از دانشمندان آشنا به زبانهای خارجی در آن کار میکردند. در این دارالترجمه بسیاری از آثار یونانیان نظیر آپولونیوس ، اقلیدس ، ارشمیدس ، تئودوسیوس ، بطلمیوس ، جالینوس و ائوتوکیوس به وسیله او یا تحت سرپرستی وی به عربی ترجمه شد.
ابو حفض یا ابوالفتح الدین عمر بن ابراهیم نیشابوری مشهور به خیام نیشابوری از برجسته ترین حکما و ریاضی دانان جهان در سال 329 ه.ق در نیشابور به دنیا آمد .خیام کمتر می نوشت و شاگرد می پذیرفت ، وی برای کسب دانش به خراسان و عراق نیز سفر کرد . به واسطه تبحر و دانش عظیمی که در ریاضیات و نجوم داشت ، از سوی ملکشاه سلجوقی فراخوانده شد، ملکشاه به او احترام می گذاشت و خیام نزد او قرب و منزلت ویژه ای داشت . او بنا به خواست ملکشاه در ساخت رصدخانه ملکشاهی و اصلاح تقویم با سایر دانشمندان همکاری داشت . حاصل کارش در این زمینه تقویم جلالی آن است که هنوز اعتبار و رواج دارد و تقویم او از تقویم گریگور یابی دقیق تر است .
یکی دیگر از دانشمندان اسلامی که تحولی عظیم در علم ریاضی پدید آورد ابوعبدالله محمدبن موسی خوارزمی( متوفی 232 هـ. ق. ) است.این ریاضیدان ، منجم، جغرافیدان و مورخ ایرانی یکی از منجمین دربار مأمون خلیفه بود. وی در بیت الحکمه مشغول کار بود.
بیت الحکمه مؤسسه علمی معروفی بود که مأمون خلیفة عباسی ( 198-218 هـ. ق. ) به تقلید از دارالعلم قدیم جندیشاپور در بغداد تأسیس کرد. ظاهراً فعالیت عمدة این مرکز ترجمة آثار علمی و فلسفی یونانی به عربی بود. عده ای از مترجمان برجسته و نیز کاتبان و صحافان در آنجا کار می کردند. کتابخانه ای که بدین طریق فراهم آمد و عنوان خزانه الحکمه داشت از زمان هارون الرشید و برامکه سابقه داشت.
از مؤسسات وابسته به بیت الحکمه رصدخانه ای در بغداد و رصدخانه ای در دمشق بود که منجمین و ریاضیدانان اسلامی در آنجا به رصد کواکب و فراهم کردن زیجها (جداولی که از روی آن به حرکت اجرای سماوی پی می برند) اشتغال داشتند.
درباره اهمیت و ارزش آثار خوارزمی چنین آورده اند:
« خوارزمی درخشانترین چهره در میان دانشمندانی بود که در دربار مأمون گرد هم آمده بودند. او کتب و آثاری را در علوم جغرافیا و نجوم تدوین نمود که سیصد سال بعد به وسیله آتل هارت انگلیسی به لاتین ترجمه و در اختیار علمای اروپا قرار گرفت.
ولی دو اثر او در ریاضیات نام او را جاودانی ساختند. یکی از آنها حل المسائل علمی ، برای زندگی عملی، با عنوان جبر و مقابله بود. مترجمی که در قرون وسطی این اثر را برگرداند نیز همان نام عربی را برای آن برگزید و اولین کلمة عنوان کتاب یعنی « الجبر» را برای همیشه در ریاضیات تحت عنوان Algebra به جای ماند ( گذاشت ).
دومین اثر خوارزمی که نامش را جاودان ساخت ، همان کتاب آموزشی فن محاسبه بود که در آن طریقة استفاده از اعداد هندی را می آموخت. نوشتن اعداد ، جمع و تفریق ، نصف کردن و دو برابر کردن ، ضرب، تقسیم و محاسبات کسری. این کتابچه نیز به اسپانیا آورده و در اوایل قرن دوازدهم میلادی به لاتین برگردانده شد. ترجمة آن از عربی به لاتین با این جمله آغاز می گردد: «چنین گفت الگوریتمی ( خوارزمی ) ، بگذار خدا را شکر گوییم، سرور و حامی ما.»
Dixit algorithmi : lavdes deo rectori nostri atque defensori dicamus dignos
از دیگر دانشمندان اسلامی که در رشد دانش ریاضی بسیار مؤثر بودند می توان از ابوالوفای بوزجانی( 328-388 هـ. ق. ) نام برد.
گاسپار مونژ در سال 1746 در شهر کوچک بون واقع در فرانسه متولد شد. مونژ که فرزند کاسب دوره گردی بود در 16 سالگی به تیزکردن چاقو و قیچی و غیره می پرداخت وی با وسایلی که به دست خود ساخته بود نقشه بزرگی از وطن خود تهیه کرد که مورد توجه و تحسین فراوان واقع شد و نقشه او را در فرمانداری نصب کردند.
معلمین او پس از مشاهده نقشه گفتند او داناتر از آن است که شاگرد ما باشد و او را برای تدریس فیزیک به مدرسه کشیشان شهر لیون فرستادند وی دستیار شارل بوسو، استاد ریاضیات، شد در سال 1768 مونژ جانشین او شد اگر چه مقام استادی نداشت سال بعد به عنوان مدرس فیزیک تجربی در مدرسه جای آبه نوله را گرفت در این سمتهای دو گانه که قسمتی از آن اختصاص به هدفهای علمی داشت مونژ نشان داد که ریاضیدان و فیزیکدانی توانا، طراحی با استعداد، آزمایگشری ماهر و معلمی در تراز اول است. مونژ به مطلعه بعضی از شاخه های هندسه دوباره جان بخشید و کار وی نقطه شروع شکوفایی فوق العاده آن رشته در سده 19 بود علاوه بر این پژوهشهای وی به رشته های دیگر تحلیل ریاضی کشیده شد خصوصاٌ به نظریه معادلات دیفرانسیل جزئی و مسائل فیزیک، شیمی و فناوری. مونژ که معلمی نامدار و رئیس مدرسه ای بی نظیر بود، مسئولیتهای مهم اداری و سیاسی را در طول انقلاب و دوره امپراطوری بر عهده گرفت بنابراین وی یکی از مبتکرترین ریاضیدانان عصر خود بود مونژ خیلی زود کارهای شخصی خود را آغاز کرد پژوهشهای وره جوانی او(1766 – 1772) بسیار متنوع اما جلوه دهنده خصوصیاتی بودند که نشانه استعداد کامل وی بود: از جمله حس تند و تیز درک واقعیت هندسی، علاقه به مسائل علمی، توانایی عظیم تحلیلی و توجه به جنبه های متعدد تحلیلی هندسی. در جریان سالهای 1777 تا 1780 مونژ عمدتاٌ به فیزیک و شیمی علاقه مند بود و مقدمات تهیه آزمایشگاه شیمی مجهزی را برای مدرسه مهندسی فراهم آورد انتخاب شدنش به عضویت فرهنگستان علوم به عنوان هندسه دان دستیار در سال 1780 زندگی مونژ را دگرگون ساخت زیرا وی را مجبور کرد که بر اساس منظمی در پاریس اقامت کند در پاریس در طرحهای فرهنگستان شرکت کرد و مقاله هایی در باره فیزیک و شیمی و ریاضیات تنظیم و عرضه نمود فهرستی از مطالبی که به فرهنگستان تقدیم کرد گواه بر تنوع آنها است: ترکیب اسید نیتریک، ا=تولید سطوح منحنی، معادلات تفاضلی متناهی و معادلات دیفرانسیل جزئی، انعکاس مضاعف و ساختار اسپات اسبند، ترکیب آهن، فولاد و چدن و تاثیر جرقه های برقی و بر گاز بیو کسید کربن، پدیده موئینگی و علل بعضی از پدیده های هواشناختی و بررسی در نور شناسی فیزولوژیک.
وقتی انقلاب در 1789 آغاز شد مونژ در زمره شناخته شده ترین دانشمندان فرانسوی بود او که عضو بسیار فعال فرهنگستان علوم بود شهرتی در ریاضیات و فیزیک و شیمی کسب کرده بود به عنوان ممتحن دانشجویان افسری نیروی دریایی، شاخه ای از مدارس نظامی فرانسه را رهبری می کرد که در آن زمان عملاٌ تنها مؤسسات نظامی بودند که تعلیمات علمی شایسته ای به دانشجویان خود می دادند و این مقام وی را، در هر بندری که از آن دیدار می کرد با دیوانسالارانی در تماس می گذاشت که اندکی بعد تحت مدیریت او قرار می گرفتند این مقام همچنین وی را قادر ساخت که معدنهای آهن، کارخانه ذوب آهن و کارخانه های دیگر را ببیند و بدین ترتیب در کار فلز پردازی و مسائل فناوری خبره و صاحب نظر شود علاوه بر این اصلاح مهمی که در 1776 در روش تعلیم در مدارس نیروی دریایی انجام داده بود وی را برای تلاشهایی آماده ساخت کهدر زمان انقلاب برای تازه کردن روشهای علمی و فنی بر عهده گرفت در سال 1794 مسئولیت تاسیس مدرسه مرکزی کارهای عامه(که بعداٌ به مدرسه پلی تکنیک تبدیل شد) به وی محول گردید مونژ مه در سال 1794 به عنوان معلم هندسه ترسیمی منصوب شد بر عمل تربیت سرکارگران آینده نظارت کرد و هندسه ترسیمی را در دوره های انقلابی که برای تکمیل تربیت دانشجویان آینده طراحی شده بودند تدریس نمود و یکی از فعالترین عضوهای شورای مدیریت بود. این مدرسه پس از دو ماه تاخیر که بر اثر مشکلات سیاسی پیش آمد در سال 1795 به نجومی منظم شروع به کار کرد. هر چند وظایفی که به عنوان سناتور به عهده مونژ محول شد موجب گردید که او چند بار از درسهایش در مدرسه پلی تکنیک دور شود از علاقه شدیدش به مدرسه هیچ کاسته نشد مراقبت دقیق در پیشرفت دانشجویان داشت و کارهای پژوهشی انان را دنبال می کرد و دقت خاصی به برنامه تعلیمات مبذول داشت بیشتر آنچه مونژ در این دوره منتشر کرد برای دانشجویان مدرسه پلی تکنیک نوشته شده بود موفقیت گسترده کتاب او بنام«هندسه ترسیمی) (1799) باعث اشاعه سریع این شاخه جدید هندسه هم در فرانسه و هم در خارج از آن شد. این اثر چند بار چاپ شد.
کار عملی مونژ ریاضیات(شاخه های گوناگون هندسه و تحلیل ریاضی) فیزیک، مکانیک و نظریه ماشینها را در می گرفت اگر چه اطلاع از جزئیات خدمات مونژ به فیزیک بسیار ناچیز است زیرا وی هرگز اثر عمده ای در این زمینه منتشر نساخت خدمات اصلی وی متمرکز بودند بر نظریه آزمایشهای مربوط به گرما، صوت، برق ساکن، نور شناسی(نظریه سرابها) مهمترین پژوهش مونژ در شیمی مربوط بود به ترکیب آب. خیلی زود، در سال 1781 وی ترکیب اکسیژن با ئیدروژن را در لوله اکسیژن سنج تحقق بخشید و در سال 1783 – همزمان با لاووازیه و بی ارتباط با او – آب را ترکیب کرد. با این که اسباب مونژ بسیار ساده تر بود نتایج اندازه گیریهایش دقیقتر بودند. در قلمرو تجربی در سال 1784 مونژ با همکاری کلوله برای نخسین بار موفق شد که گازی را مایع سازد و آن انیدرید سولفور(بیوکسیدگوگرد) بود.
سراجام بین سالهای 1786 و 1788 مونژ با برتوله و اندر مونه در اصول فلز پردازی و ترکیب آهن و چدن و فولاد به پژوهش پرداخت. مونژ مردی شجاع و از دوستان ناپلئون بود و در سال 1798 به اتفاق او به کشور مصر رفت در این سفر ناپلئون نتوانست او را از شرکت در حمله به اسکندریه منصرف سازد.
بعد از آنکه ناپلئون روانه سنت هلن گردید مخترع هندسه ترسیمی و ایجاد کننده اصلی مدرسه پلی تکنیک هم تمام عناوین خود را از دست داد و از آکادمی رانده شد. مونژ در 28 سال 1818 در 72 سالگی در پاریش درگذشت مخترع هندسه ترسیمی میراثی عظیم از خود به جا گذاشت زیرا ساختن ماشینهای مدرن و عمارات عظیم بدون کمک آن ممکن نیست.
بلزپاسکال»
«بلزپاسکال» ریاضیدان، و فیزیکدان، و فیلسوف بزرگ فرانسوی، در قرن 17زندگی میکرد. او ماشین حساب را ساخته است. و نیز نشانههای کلی بخش پذیری هر عدد صحیح به هر عدد صحیح دیگر را پیدا کرده است. و نیز یک مثلث عددی خاصی ترتیب داده است، که به نام خود او «مثلث پاسکال» نامیده میشود. و منظور ما در اینجا آشنایی با همین مثلث است. اما قبل ازاینکه مثلث پاسکال را توضیح دهیم، ناچاریم ابتدا دو عدد مخصوص را بشناسیم:
اولا ّعدد مثلثی چیست؟ این عدد حاصل جمع چند جملهی متوالی یک تصاعد عددی است، که جملهی اول آن 1وقدرنسبتش عددصحیح است. مثلاّ در تصاعد عددی7، 6، 5، 4، 3 ، 2، 1اعداد(1) و (2+1) و (3+2+1)و (4+3+2+1)...و یعنی عددهای 1و3و6و10و15و...را اعداد مثلثی مینامند، زیرا با هر یک از آنها میتوان تشکیل مثلث متساویالاضلاع داد. مثلاّ اگر6 گلولهی را در ردیفهای 1و2و3تایی کنار هم روی میز قرار دهید، یک مثلث متساویالاضلاع تشکیل میشود. حال اگر4گلولهی شیشهای دیگر را زیر آنها قرار داده، و ردیف جدید را تشکیل دهید، یک مثلث متساویالاضلاعجدید شامل 10گلوله خواهیدداشت.
ثانیاّ عدد هرمی چیست؟ گفتیم که با10گلولهی شیشهای میتوان یک مثلث منتظم تشکیل داد. مثلث قشر دوم را که با6گلوله ساخته میشود، و روی آن قرارداد. و سرانجام یک گلولهی شیشهای را هم میتوان روی آنها گذاشت، و با چهار ردیف مثلث، که از گلولههای شیشهای تشکیل یافتهاند، که یک عدد مثلثی بلافاصله بزرگتر زیر آنها بگذاریم، پس با معلوم بودن سری اعداد مثلثی 1و3و6و10و 15و 21و 28و36و 45و 55 و... ساختن اعداد هرمی آسان است: از1 شروع میکنیم، مرتباّ تا هر جا که بخواهیم، با عددهای مثلثی پشت سرخود جمع میکنیم، تا پشت سرهم عددهای هرمی حاصل شوند. مثلاّ از مجموع 1و3و6و10و15و21عدد56 به دست میآید، که یک عدد هرمی است.
عکس پیدا نشد
و برای پیداکردن عدد هرمی بزرگتر از آن باید روی 56 عدد28را بیفزاییم تا84 به دستآید. و حالا مثلث پاسکال: مثلثپاسکال به این ترتیب درست شده است، که هرعدد (جزواحدهای کنار آن) از مجموع نزدیکترین دوعدد بالای آن درست شده است. مثلاّ120حاصل جمع عددهای 84 و36 است، که در ردیف افقی فوقانی آن، و در طرفین عدد مزبور قرار دارند. در این جدول شگفتانگیز نخستین ردیف اریب را واحدها تشکیل دادهاند. در دومین ردیف اریب سری عددهای طبیعی قرار دارند. در سومین ردیف اریب اعداد مثلثی پشت سر هم واقع شده اند. و در چهارمین ردیف اریب عددهای هرمی1و4و10و20و35و56 و... به دنبال هم قرار گرفتهاند.برای اطلاع از ویژگیهای ردیف اریب باید به فضای چهار بعدی برویم، که فعلاّ از آن صرفنظر میکنیم.
شما میتوانید بین اعداد واقع در این مثلث ویژگیهای عجیب دیگری هم کشف کنید مثلاّ اعداد «فیبوناچی» هم در مثلث پاسکال ظاهر میشوند، که گویا خود پاسکال از آن بیاطلاع بوده است. در واقع این ویژگی مثلث پاسکال تا نیمهی دوم قرن نوزدهم ناشناخته بود.
برای به دست آوردن اعداد فیبوناچی از مثلثپاسکال، کافی است به خطوط اریبی، که بالای این مثلث به موازات هم رسم کرده ایم، توجه کنید.
عکس پیدا نشد
خواهیددید که مجموع عددهای واقع در هر ردیف به ترتیب اعداد فیوناچی را میرساند. و شما میتوانید رسم خطهای اریب را زیرهم ادامه دهید، و مجموع اعداد واقع در روی آنها را به دست آورید، تا سری اعداد فیبوناچی کامل شوند.
از خصوصیات جالب مثلثپاسکال این است که مجموع عددها در هر سطر افقی برابر است با توانی از2، مثلاّ اعداد واقع در پنجمین ردیف افقی را اگرجمع کنیم، 16می شود، که برابر24است. و مجموع اعداد ششمین ردیف افقی نیز 32 یا 25است.
و حالا نوبت شماست، که اعداد واقع در این مثلث را به دقت مورد بررسی قراردهید، تا ویژگیهای جدیدی در آن کشف کنید.
|
پلیمرها (بسپارها) یا ماکرومولکولها (درشت مولکولها) ، مولکولهای غولپیکری هستند که دستکم ، 100 برابر سنگینتر از مولکولهای کوچکی مانند آب یا متانول هستند. |
|
آیا تا بحال نام اکستاسی را شنیده اید؟ آیا تا به حال در میهمانیهائی موسوم به اکس پارتی شرکت کرده اید؟ احتمالاً در بین دوستان شما کسانی هستند که اسم این ماده را شنیده اند یا آنرا مصرف کرده اند ؟! اکستاسی در قالب قرص های شادی بخش به طاعون خفتۀ عصر ما تبدیل می شود.
ایدۀ ابتدائی نوشتار این مطالب نگرانی جمعی از دانشجویان پزشکی است که با توجه به شیوع مصرف این ماده در بین جوانان بر آن شدند تا تحقیقی جامع در این زمینه از بررسی عوارض مصرف تا بررسی میزان مصرف انجام دهند. آنچه در این نوشتار مشاهده می کنید نتیجۀ تحقیقات این جمع است که به منظور اطلاع رسانی عمومی خدمتتان عرضه می شود.
● آیا می دانید در صورت دستگیری فرد مصرف کننده یا توزیع کننده قرصهای اکس این فرد به دادگاه انقلاب ارجاع می شود و در این موارد حکم تعزیری صادر می شود ؟
اکستاسی چیست ؟
ترکیب MDMA یا 3 و 4 متیلن دی اکسی مت امفتامین که به نامهای اکستاسی، اکستازی، XTC ، E (ای) ،X (اکس) هم معروف است. در ایران به نام قرص شادی هم شناخته میشود. این ماده در 1914 در آلمان به عنوان کم کننده اشتها مورد استفاده قرار گرفت که به علت اثرات آن از رده مصرف خارج شد. در دهه 70 میلادی این دارو کاربرد مجدد یافت و در روان درمانی برای کمک به بیان احساسات بیماران استفاده شد که در 1984 با اثبات اثرات آن روی مغز حیوانات آزمایشگاهی، از رده خارج شد. در 1985 در آمریکا، مصرف آن ممنوع اعلام شد. در سالهای اخیر مصرف آن در آمریکا، در پارتیهای شبانه موسوم به Raves به شدت افزایش یافته است که باعث نگرانی دولت امریکا شده است. در دوره زمانی خاصی در اروپا، مصرف این مواد انرژی زا و شادیبخش برای کاهش مصرف سایر مواد مخدر مثل هروئین تشویق شده است بطوری که مصرف آن در اروپا در 1995 از 500 هزار قرص در سال به 30 میلیون قرص در دو سال بعد رسیده است.
2 درصد مردم امریکا حداقل یکبار این ترکیب را مصرف کردهاند. حداقل یازده و هفت دهم درصد دانشاموزان کلاس آخر دبیرستان در آمریکا یکبار “اکس” مصرف کردهاند مصرف این قرصها در ایران به خصوص در یکسال اخیر در پارتیهای شبانه به شدت افزایش یافته است. جوانان تحصیل کرده و مرفه مصرفکنندگان اصلی این داروها هستند. لازم است عموم مردم و پزشکان با اثرات سوء مصرف این دارو آشنا شوند میزان مراجعه به اورژانسها در امریکا در اثر سوء مصرف این دارو به شدت افزایش یافته است. (از 1143 مورد در 1998 به 4511 مورد در سال 2000)
همچنانکه ذکر خواهد شد مشکل اصلی در مصرف این مواد عوارض مزمن آن میباشد. عوارض حاد مصرف بیشتر در مرتبه اول مصرف و در صورت تداخل با بعضی داروهای ضدافسردگی پیش میآید.
ترکیب شیمیائی
3 , 4 MethylendioxyMethAmphetamine یا N, Alpha, DiMethyl 1,3 Benzodiazoxide 5 Ethamine با فرمول C11H15N2O که بنامهای MDMA یا اکستاسی معروف است.
اشکال رایج داروئی
دارو در امریکا بصورت قرصهای خوراکی و جویدنی، کپسول و مواد تدخینی و تزریقی موجود است. قیمت هر قرص بین 10 تا 30 دلار است در ایران قیمت قرص بین 4 تا 20 هزار تومان (متوسط 10 هزار تومان) است که با مارکهای مرسدس بنز و میستوبیشی، $ ، KO ، صلیب، موجود است و به علت قابلیت ساخت آن که براحتی انجام میشود در لابراتورهای داخلی هم ساخته میشود که خطر وجود مواد اضافی در آن و عوارض آن است. هر قرص خوراکی حاوی 80 تا 160 میلیگرم MDMA است. پس از بلعیدن اثرات قرص پس از 20 تا 90 دقیقه بعد ظاهر شده و حدود 2 تا 3 ساعت اثرات آن در یک حد حفظ شده و بعد افت می کند و از 3 تا 24 ساعت اثرات آن باقیست.
اپیدمیولوژی
میزان مصرف این قرصها در آمریکا به شدت میان جوانان و نوجوانان در حال افزایش است طبق آخرین آمار تعداد کسانی که برای حداقل یکبار از این ماده استفاده کردهاند بین دانشآموزان کلاس آخر دبیرستان در آمریکا از نه درصد به دوازده درصد افزایش یافته است.
دو درصد از کل حمعیت ایالات متحده حداقل یکبار اکستاسی مصرف کرده اند.
آشکارسازی ذرات عبارتست از فرآیندی که در آن خصوصیاتی مانند جرم ، انرژی ، بار الکتریکی ، مسیر حرکت و ... و در مجموع نوع یک ذره حامل انرژی که در واکنشهای هستهای بوجود میآید، توسط دستگاهی (اغلب آشکارساز) تعیین میشود.
دید کلی
فرآیند آشکارسازی متشکل از یک دستگاه آشکارساز است که بسته به نوع ذره تابشی و آشکارسازی خصیصهای از ذره ، نوع دستگاه فرق میکند. سهم عمده در آشکارسازی ذره توسط مادهای متناسب با ذره تابشی در دستگاه آشکارساز انجام میشود که عبارت است از برهمکنش ذره باردار حامل انرژی با الکترونهای مداری ماده آشکارسازی که این برهمکنش توسط مدارهای الکترونیکی آشکارساز ، به یک پالس الکتریکی تبدیل میشود. عوامل موثر بر آشکارسازی ذرات در این مقوله مورد بررسی قرار میگیرد.
ذرات تابشی
واپاشی هستهای یک فرآیند خودبخودی است، یعنی سیستم بطور خودبهخودی ، از حالتی به حالتی دیگر تغییر میکند. پایستگی انرژی ایجاب میکند که انرژی حالت نهایی پایینتر از حالت اولیه باشد. این اختلاف انرژی به طریقی به خارج سیستم فرستاده میشود. در تمام این موارد ، این امر با گسیل ذرات حامل انرژی بدست میآید که این ذرات یک یا ترکیبی از گسیل الکترومغناطیسی ، گسیل بتا و گسیل نوکلئون است که کلا میتوان ذرات تابشی را به دو بخش ، ذرات تابشی باردار حامل انرژی و ذرات بیبار حامل انرژی ، تقسیمبندی کرد.
ذرات تابشی باردار حامل انرژی
بار الکتریکی ذرات باردار حامل انرژی سهم مهمی در آشکارسازی ذره دارد. وقتی ذره تابشی از کنار اتمها عبور میکند، به علت باردار بودن ، بر الکترونهای مداری نیروی الکتریکی وارد میکند. در این برهمکنش انرژی مبادله میشود که باعث کند شدن حرکت ذره تابشی و کنده شدن الکترونها از مدارشان میشود. این الکترونهای جدا شده از مدار اساس بسیاری از روشهای آشکارسازی ذرات تابشی و اندازه گیری جرم ، بار ، انرژی و ... آنها است.
روشهای کلی آشکار کردن ذرات باردار حامل انرژی
سه روش اساسی برای آشکار کردن ذرات باردار تابشی با استفاده از یونش وجود دارد :
یونش را میتوان قابل روئیت کرد، بطوری که رد ذرات را بتوان دید و یا عکسبرداری کرد.
وقتی که زوج الکترون _ یون دوباره ترکیب میشوند، نور گسیل شده را با یک دستگاه حساس به نور میتوان آشکارسازی کرد.
با استفاده از یک میدان الکتریکی میتوان الکترونها و یونها را جمعآوری کرد و از این طریق یک علامت الکتریکی تولید کرد.
ذرات تابشی بیبار حامل انرژی
در آشکارسازی ذرات باردار حامل انرژی ، بار ذره عامل مهمی در آشکارسازی ذره بود ولی نوترونها و فوتونها (در ناحیه پرتوهای ایکس و گاما) فاقد بار هستند، لذا روشهایی که برای آشکارسازی آنها بکار رفته، کمتر از ذرات باردار است. احتمال برهمکنش نوترونها یا پرتوهای ایکس و گاما با اتم یا هسته آن بهصورت سطح مقطع کل بیان میشود.
فوتونها (در ناحیه پرتوهای ایکس و گاما)
پرتوهای ایکس و گاما با الکترونهای مداری ماده از طریق سه برهمکنش شناخته شده ، یعنی اثر فوتوالکتریک ، پراکندگی کامپتون و تولید زوج الکترون _ پوزیترون برهمکنش میکنند. برای پرتوهای ایکس و گاما سطح مقطع کل با مجموع سطح مقطعهای سه برهمکنش اساسی یاد شده در بالا برابر است.
نوترونها
نوترونها میتوانند پراکنده شوند و یا واکنشهای هستهای ایجاد کنند که بسیاری از این واکنشها منجر به گسیل ذرات باردار حامل انرژی میشود. تمام روشهای آشکارسازی نوترونها در نهایت به آشکارسازی ذرات باردار منجر میشود که بعد از تابش نوترون به یک ماده خاص ذره باردار تابش میشود. برای نوترون سطح مقطع کل با مجموع سطح مقطعهای واکنش و پراکندگی برابر میباشد.
اصول کار دستگاههای آشکارساز
اصول کار اغلب دستگاههای آشکارساز مشابه است. تابش وارد آشکارساز میشود، با اتمهای ماده آشکارساز برهمکنش میکند (اثر تابش بر ماده) و ذره ورودی بخشی از انرژی خود را صرف جداسازی الکترونهای کمانرژی ماده آشکارساز از مدارهای اتمی خود میکند. این الکترونها و یونش ایجاد شده جمعآوری میشود و توسط یک مدار الکترونیکی برای تحلیل به صورت یک تپ ولتاژ یا جریان در میآید.
خصوصیات مواد آشکارساز بکار رفته در آشکارسازها
ماده مناسب برای آشکارسازی هر ذره بستگی به نوع ذره تابشی دارد.
برای تعیین انرژی تابشی بایستی تعداد الکترونهای آزاد شده از ماده زیاد باشد.
برای تعیین زمان گسیل تابش باید مادهای را انتخاب کنیم که در آن الکترونها به سرعت تبدیل به تپ شوند.
برای تعیین نوع ذره باید مادهای انتخاب شود که جرم و بار ذره اثر مشخصی بر روی ماده داشته باشد.
اگر بخواهیم مسیر ذره تابشی را دنبال کنیم، باید ماده آشکارساز نسبت به محل ورود ذره تابشی حساس باشد.
انواع آشکارسازها
اتاقک ابر
اتاقک ابر متشکل از محفظهای از هوا و بخار آب به حالت اشباع است. در اطراف یونهای تشکیل شده از تابش ذرات باردار حامل انرژی ، قطرههای آب تشکیل میشود که با نوردهی مناسب میتوان مسیر حرکت ذره را دید یا عکسبردای کرد.
اتاقک حبابی
اتاقک حباب متشکل از محفظهای از مایع فوق گرم است. در اتاقک حباب وقتی به طرز ناگهانی از فشار کاسته میشود، مایع شروع به جوشیدن میکند. حبابها بر روی یونهایی که در مسیر ذرات باردار تابشی پرانرژی قرار دارند، تشکیل میشوند که میتوان آنها را روئیت کرد یا از آنها عکسبرداری کرد.
اتاقک جرقهای
اتاقک جرقه متشکل از دو صفحه یا دو سیم موازی است که ولتاژ قوی میان هر جفت از صفحهها برقرار است. در مواقعی که جرقههای قوی بین دو صفحه زده میشود که به احتمال قوی جرقهها در همان مسیر حرکت ذره باردار حامل انرژی است که در گاز مربوطه یونش ایجاد کرده است که میتوان آن را دید یا عکسبرداری کرد.
امولسیون عکاسی
در مسیر ذرات تابشی باردار حامل انرژی دانههای هالوژنه نقره تشکیل میشود که میتوان آن را پس از ظهور فیلم عکاسی روئیت کرد.
آشکارساز سوسوزن (سینتیلاسیون)
در یک بلور جسم جامد ، برهمکنش ذره باردار پرانرژی با الکترونهای مداری باعث کنده شدن آنها میشود. الکترون کنده شده وقتی در تهیجا (مدار الکترونی فاقد الکترون) میافتد، نور گسیل میکند. اگر بلور به این نور شفاف باشد، عبور ذره باردار حامل انرژی با سینتیلاسیون یا سوسوزنی نور گسیل شده از بلور علامت داده میشود که این علامت نوری توسط اثر فتوالکتریک به یک تپ الکتریکی تبدیل میشود.
آشکارساز گازی
در آشکارساز گازی ذره باردار حامل انرژی در گاز پر شده میان دو الکترود فلزی تولید زوج الکترون _ یون میکند. میدان الکتریکی از برقراری ولتاژ حاصل میشود که این میدان باعث شتاب الکترونها و یونها به ترتیب به طرف الکترود مثبت و منفی میشود. چون در مسیر حرکت با اتمهای دیگر برخورد میکنند، حرکت آنها حرکت سوقی است.
آشکارسازهای حالت جامد یا نیم رسانا
این نوع آشکارسازها از یک اتصال p - n میان سیلیسیم یا ژرمانیم نوع P و نوع n تشکیل یافته است. وقتی ولتاژی در خلاف جهت رسانش دیود اعمال میشود، ناحیهای تهی از حاملهای بار در پیوندگاه بوجود میآید. هنگامی که ذره باردار حامل انرژی در طول ناحیه تهی حرکت میکند، در نتیجه برهمکنش آن با الکترونهای داخل بلور مسیر با زوجهای الکترون _ حفره معین میشود. الکترونها و حفرهها جمع میشوند و تپی الکتریکی در شمارشگر بوجود میآید.
طیفسنجهای مغناطیسی
در طیفسنجهای مغناطیسی از میدان مغناطیسی یکنواخت استفاده میکنند. اگر از یک منبع چند تابش مختلف داشته باشیم، وقتی ذرات باردار حامل انرژی تابشی وارد میدان مغناطیسی یکنواخت میشوند، مسیرهای دایرهای متفاوت میگیرند. از برخورد این مسیرهای دایرهای متفاوت با وسیله ثابتی مثلا فیلم عکاسی به تعداد ذرات باردار تابشی ، تصویر تشکیل میشود.
آشکارساز تلسکوپی
آشکارسازی تلسکوپی متشکل از دو یا چند شمازشگر است که در آن تابش به ترتیب از شمارشگرها عبور میکند. شمارشگرهای اولیه نازک هستند، بطوری که ذره نسبتی از انرژی خود را به آنها میدهد، ولی در آخرین شمارشگر بطور کامل انرژی ذره جذب میشود. این شمارشگر بیشتر برای زمانسنجی استفاده میشوند.
شمارشگر تناسبی چندسیمی
این شمارشگر به عنوان آشکارسازی که نسبت به محل برهمکنش ذره حساس است، استفاده میشود.
قطبسنجها
اغلب برای اندازه گیری قطبیدگی تابش استفاده میشود.
این واژه از واژهٔ یونانی atomos، به معنی بخشناشدنی و نابریدنی گرفته شده است، که از پیشوند a، بمعنی نا-، و tomos، بمعنی برش، ساخته شده است.
اتمها از طریق شیمیایی قابل تجزیه نیستند. باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم معمولاً میان ۱۰ تا ۱۰۰ پیکومتر متفاوت است. قطر اتم 10-10 متر است و اندازه هسته در مرکز اتم ۰/۰۰۰۰۱ بزرگی اتم است و یا به عبارتی دقیقتر قطر کامل هسته به طور میانگین 10-15 متر است.
مواد متنوعی که روزانه در آزمایش و تجربه با آن روبهرو هستیم، متشکل از اتمهای گسسته است. وجود چنین ذراتی برای نخستین بار توسط فیلسوفان یونانی مانند ذیمقراطیس، لئوکیپوس و اپیکوروس، بدون ارائهٔ اثبات، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانی که در سده ۱۸ میلادی، راجر بوسکوویچ آن را احیاء نمود، و پس از آن از سوی جان دالتون در شیمی بکار برده شد.
راجر بوسکوویچ نظریهٔ خود را بر پایهٔ مکانیک نیوتنی قرارداد و آن را در سال ۱۷۵۸ میلادی تحت عنوان Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium چاپ کرد.
برپایه نظریه بوسکوویچ، اتمها نقاط بیاسکلتی هستند که بسته به فاصلهٔ آنها از یکدیگر، نیروهای کشش و رانش بر یکدیگر وارد میکنند. جان دالتون از نظریهٔ اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده، استفاده کرد. در اثر تلاش آمادئو آووگادرو در سدهٔ ۱۹ میلادی، دانشمندان توانستند تفاوت میان اتمها و مولکولها را درک کنند. در روزگار جدید، اتمها به صورت تجربی مشاهده شدهاند. در آزمایشها نیز مشخص گردیده است که اتمها خود از ذرات کوچکتری ساخته شدهاند. در مرکز اتم، یک هستهٔ کوچک مرکزی مثبت متشکل از ذرات هستهای (پروتونها و نوترونها)، و بقیه اتم فقط از پوستههای موجدار الکترون تشکیل شده است. معمولاً اتمهای با داشتن تعداد مساوی الکترون و پروتون، از نظر الکتریکی خنثی هستند.
اتمها عموماً بر حسب عدد اتمی که متناسب با تعداد پروتونهای آن اتم است، ردهبندی میشوند. برای مثال، اتمهای کربن اتمهایی هستند که شش پروتون دارند. تمام اتمهای با عدد اتمی یکسان، دارای ویژگیهای فیزیکی یکسان بوده و واکنش شیمیایی یکسان از خود نشان میدهند. انواع گوناگون اتمها در جدول تناوبی فهرست شدهاند. اتمهای دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (به علت تعداد متفاوت نوترونهای آنها) ایزوتوپ نامیده میشوند.
سادهترین اتم، اتم هیدروژن است که عدد اتمی آن یک است و یک پروتون و یک الکترون دارد. این اتم در بررسی موضوعات علمی، بویژه در آغاز شکلگیری نظریهٔ کوانتوم، بسیار مورد توجه بوده است.
واکنش شیمیایی اتمها عمدتاً وابسته به آثار متقابل الکترونهای آنهاست. بویژه الکترونهایی که در بیرونیترین لایهٔ اتمی قرار دارند به نام الکترونهای ظرفیتی، بیشترین اثر را در واکنشهای شیمیایی نشان میدهند. الکترونهای مرکزی (یعنی آنهایی که در لایهٔ بیرونی نیستند) نیز موثرند ولی به علت وجود بار مثبت هستهٔ اتمی، نقششان ثانوی است.
اتمها گرایش زیادی به تکمیل لایهٔ الکترونی بیرونی خود (یا تخلیهٔ کامل آن) دارند، لایهٔ خارجی هیدروژن و هلیوم ظرفیت دو الکترون و در اتمهای دیگر ظرفیت هشت الکترون را دارند. این عمل با استفادهٔ مشترک از الکترونهای اتمهای مجاور و یا با جدا کردن کامل الکترونها از اتمهای دیگر فراهم میشود. هنگامی که الکترونها در مشارکت اتمها قرار میگیرند، یک پیوند کووالانسی میان دو اتم تشکیل میشود. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی هستند