برای خواندن این فایلها به Acrobat Reader احتیاج دارید.
نسخه انگلیسی کامل |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ZipFile Pass: harrypotter2000
|
لینک های زیر سالمند .
فصل های 1 تا 15 [2.85Mb / 14Min]
فصل های 15 تا 30 [3Mb / 15Min]
برای دانلود کردن : روی لینک راست کلیک کنید و سپس گزینه Save Target As را انتخاب کنید .
دانلود کنید . بخوانید و لذت ببرید.
آشکارسازی ذرات عبارتست از فرآیندی که در آن خصوصیاتی مانند جرم ، انرژی ، بار الکتریکی ، مسیر حرکت و ... و در مجموع نوع یک ذره حامل انرژی که در واکنشهای هستهای بوجود میآید، توسط دستگاهی (اغلب آشکارساز) تعیین میشود.
دید کلی
فرآیند آشکارسازی متشکل از یک دستگاه آشکارساز است که بسته به نوع ذره تابشی و آشکارسازی خصیصهای از ذره ، نوع دستگاه فرق میکند. سهم عمده در آشکارسازی ذره توسط مادهای متناسب با ذره تابشی در دستگاه آشکارساز انجام میشود که عبارت است از برهمکنش ذره باردار حامل انرژی با الکترونهای مداری ماده آشکارسازی که این برهمکنش توسط مدارهای الکترونیکی آشکارساز ، به یک پالس الکتریکی تبدیل میشود. عوامل موثر بر آشکارسازی ذرات در این مقوله مورد بررسی قرار میگیرد.
ذرات تابشی
واپاشی هستهای یک فرآیند خودبخودی است، یعنی سیستم بطور خودبهخودی ، از حالتی به حالتی دیگر تغییر میکند. پایستگی انرژی ایجاب میکند که انرژی حالت نهایی پایینتر از حالت اولیه باشد. این اختلاف انرژی به طریقی به خارج سیستم فرستاده میشود. در تمام این موارد ، این امر با گسیل ذرات حامل انرژی بدست میآید که این ذرات یک یا ترکیبی از گسیل الکترومغناطیسی ، گسیل بتا و گسیل نوکلئون است که کلا میتوان ذرات تابشی را به دو بخش ، ذرات تابشی باردار حامل انرژی و ذرات بیبار حامل انرژی ، تقسیمبندی کرد.
ذرات تابشی باردار حامل انرژی
بار الکتریکی ذرات باردار حامل انرژی سهم مهمی در آشکارسازی ذره دارد. وقتی ذره تابشی از کنار اتمها عبور میکند، به علت باردار بودن ، بر الکترونهای مداری نیروی الکتریکی وارد میکند. در این برهمکنش انرژی مبادله میشود که باعث کند شدن حرکت ذره تابشی و کنده شدن الکترونها از مدارشان میشود. این الکترونهای جدا شده از مدار اساس بسیاری از روشهای آشکارسازی ذرات تابشی و اندازه گیری جرم ، بار ، انرژی و ... آنها است.
روشهای کلی آشکار کردن ذرات باردار حامل انرژی
سه روش اساسی برای آشکار کردن ذرات باردار تابشی با استفاده از یونش وجود دارد :
یونش را میتوان قابل روئیت کرد، بطوری که رد ذرات را بتوان دید و یا عکسبرداری کرد.
وقتی که زوج الکترون _ یون دوباره ترکیب میشوند، نور گسیل شده را با یک دستگاه حساس به نور میتوان آشکارسازی کرد.
با استفاده از یک میدان الکتریکی میتوان الکترونها و یونها را جمعآوری کرد و از این طریق یک علامت الکتریکی تولید کرد.
ذرات تابشی بیبار حامل انرژی
در آشکارسازی ذرات باردار حامل انرژی ، بار ذره عامل مهمی در آشکارسازی ذره بود ولی نوترونها و فوتونها (در ناحیه پرتوهای ایکس و گاما) فاقد بار هستند، لذا روشهایی که برای آشکارسازی آنها بکار رفته، کمتر از ذرات باردار است. احتمال برهمکنش نوترونها یا پرتوهای ایکس و گاما با اتم یا هسته آن بهصورت سطح مقطع کل بیان میشود.
فوتونها (در ناحیه پرتوهای ایکس و گاما)
پرتوهای ایکس و گاما با الکترونهای مداری ماده از طریق سه برهمکنش شناخته شده ، یعنی اثر فوتوالکتریک ، پراکندگی کامپتون و تولید زوج الکترون _ پوزیترون برهمکنش میکنند. برای پرتوهای ایکس و گاما سطح مقطع کل با مجموع سطح مقطعهای سه برهمکنش اساسی یاد شده در بالا برابر است.
نوترونها
نوترونها میتوانند پراکنده شوند و یا واکنشهای هستهای ایجاد کنند که بسیاری از این واکنشها منجر به گسیل ذرات باردار حامل انرژی میشود. تمام روشهای آشکارسازی نوترونها در نهایت به آشکارسازی ذرات باردار منجر میشود که بعد از تابش نوترون به یک ماده خاص ذره باردار تابش میشود. برای نوترون سطح مقطع کل با مجموع سطح مقطعهای واکنش و پراکندگی برابر میباشد.
اصول کار دستگاههای آشکارساز
اصول کار اغلب دستگاههای آشکارساز مشابه است. تابش وارد آشکارساز میشود، با اتمهای ماده آشکارساز برهمکنش میکند (اثر تابش بر ماده) و ذره ورودی بخشی از انرژی خود را صرف جداسازی الکترونهای کمانرژی ماده آشکارساز از مدارهای اتمی خود میکند. این الکترونها و یونش ایجاد شده جمعآوری میشود و توسط یک مدار الکترونیکی برای تحلیل به صورت یک تپ ولتاژ یا جریان در میآید.
خصوصیات مواد آشکارساز بکار رفته در آشکارسازها
ماده مناسب برای آشکارسازی هر ذره بستگی به نوع ذره تابشی دارد.
برای تعیین انرژی تابشی بایستی تعداد الکترونهای آزاد شده از ماده زیاد باشد.
برای تعیین زمان گسیل تابش باید مادهای را انتخاب کنیم که در آن الکترونها به سرعت تبدیل به تپ شوند.
برای تعیین نوع ذره باید مادهای انتخاب شود که جرم و بار ذره اثر مشخصی بر روی ماده داشته باشد.
اگر بخواهیم مسیر ذره تابشی را دنبال کنیم، باید ماده آشکارساز نسبت به محل ورود ذره تابشی حساس باشد.
انواع آشکارسازها
اتاقک ابر
اتاقک ابر متشکل از محفظهای از هوا و بخار آب به حالت اشباع است. در اطراف یونهای تشکیل شده از تابش ذرات باردار حامل انرژی ، قطرههای آب تشکیل میشود که با نوردهی مناسب میتوان مسیر حرکت ذره را دید یا عکسبردای کرد.
اتاقک حبابی
اتاقک حباب متشکل از محفظهای از مایع فوق گرم است. در اتاقک حباب وقتی به طرز ناگهانی از فشار کاسته میشود، مایع شروع به جوشیدن میکند. حبابها بر روی یونهایی که در مسیر ذرات باردار تابشی پرانرژی قرار دارند، تشکیل میشوند که میتوان آنها را روئیت کرد یا از آنها عکسبرداری کرد.
اتاقک جرقهای
اتاقک جرقه متشکل از دو صفحه یا دو سیم موازی است که ولتاژ قوی میان هر جفت از صفحهها برقرار است. در مواقعی که جرقههای قوی بین دو صفحه زده میشود که به احتمال قوی جرقهها در همان مسیر حرکت ذره باردار حامل انرژی است که در گاز مربوطه یونش ایجاد کرده است که میتوان آن را دید یا عکسبرداری کرد.
امولسیون عکاسی
در مسیر ذرات تابشی باردار حامل انرژی دانههای هالوژنه نقره تشکیل میشود که میتوان آن را پس از ظهور فیلم عکاسی روئیت کرد.
آشکارساز سوسوزن (سینتیلاسیون)
در یک بلور جسم جامد ، برهمکنش ذره باردار پرانرژی با الکترونهای مداری باعث کنده شدن آنها میشود. الکترون کنده شده وقتی در تهیجا (مدار الکترونی فاقد الکترون) میافتد، نور گسیل میکند. اگر بلور به این نور شفاف باشد، عبور ذره باردار حامل انرژی با سینتیلاسیون یا سوسوزنی نور گسیل شده از بلور علامت داده میشود که این علامت نوری توسط اثر فتوالکتریک به یک تپ الکتریکی تبدیل میشود.
آشکارساز گازی
در آشکارساز گازی ذره باردار حامل انرژی در گاز پر شده میان دو الکترود فلزی تولید زوج الکترون _ یون میکند. میدان الکتریکی از برقراری ولتاژ حاصل میشود که این میدان باعث شتاب الکترونها و یونها به ترتیب به طرف الکترود مثبت و منفی میشود. چون در مسیر حرکت با اتمهای دیگر برخورد میکنند، حرکت آنها حرکت سوقی است.
آشکارسازهای حالت جامد یا نیم رسانا
این نوع آشکارسازها از یک اتصال p - n میان سیلیسیم یا ژرمانیم نوع P و نوع n تشکیل یافته است. وقتی ولتاژی در خلاف جهت رسانش دیود اعمال میشود، ناحیهای تهی از حاملهای بار در پیوندگاه بوجود میآید. هنگامی که ذره باردار حامل انرژی در طول ناحیه تهی حرکت میکند، در نتیجه برهمکنش آن با الکترونهای داخل بلور مسیر با زوجهای الکترون _ حفره معین میشود. الکترونها و حفرهها جمع میشوند و تپی الکتریکی در شمارشگر بوجود میآید.
طیفسنجهای مغناطیسی
در طیفسنجهای مغناطیسی از میدان مغناطیسی یکنواخت استفاده میکنند. اگر از یک منبع چند تابش مختلف داشته باشیم، وقتی ذرات باردار حامل انرژی تابشی وارد میدان مغناطیسی یکنواخت میشوند، مسیرهای دایرهای متفاوت میگیرند. از برخورد این مسیرهای دایرهای متفاوت با وسیله ثابتی مثلا فیلم عکاسی به تعداد ذرات باردار تابشی ، تصویر تشکیل میشود.
آشکارساز تلسکوپی
آشکارسازی تلسکوپی متشکل از دو یا چند شمازشگر است که در آن تابش به ترتیب از شمارشگرها عبور میکند. شمارشگرهای اولیه نازک هستند، بطوری که ذره نسبتی از انرژی خود را به آنها میدهد، ولی در آخرین شمارشگر بطور کامل انرژی ذره جذب میشود. این شمارشگر بیشتر برای زمانسنجی استفاده میشوند.
شمارشگر تناسبی چندسیمی
این شمارشگر به عنوان آشکارسازی که نسبت به محل برهمکنش ذره حساس است، استفاده میشود.
قطبسنجها
اغلب برای اندازه گیری قطبیدگی تابش استفاده میشود.
این واژه از واژهٔ یونانی atomos، به معنی بخشناشدنی و نابریدنی گرفته شده است، که از پیشوند a، بمعنی نا-، و tomos، بمعنی برش، ساخته شده است.
اتمها از طریق شیمیایی قابل تجزیه نیستند. باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم معمولاً میان ۱۰ تا ۱۰۰ پیکومتر متفاوت است. قطر اتم 10-10 متر است و اندازه هسته در مرکز اتم ۰/۰۰۰۰۱ بزرگی اتم است و یا به عبارتی دقیقتر قطر کامل هسته به طور میانگین 10-15 متر است.
مواد متنوعی که روزانه در آزمایش و تجربه با آن روبهرو هستیم، متشکل از اتمهای گسسته است. وجود چنین ذراتی برای نخستین بار توسط فیلسوفان یونانی مانند ذیمقراطیس، لئوکیپوس و اپیکوروس، بدون ارائهٔ اثبات، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانی که در سده ۱۸ میلادی، راجر بوسکوویچ آن را احیاء نمود، و پس از آن از سوی جان دالتون در شیمی بکار برده شد.
راجر بوسکوویچ نظریهٔ خود را بر پایهٔ مکانیک نیوتنی قرارداد و آن را در سال ۱۷۵۸ میلادی تحت عنوان Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium چاپ کرد.
برپایه نظریه بوسکوویچ، اتمها نقاط بیاسکلتی هستند که بسته به فاصلهٔ آنها از یکدیگر، نیروهای کشش و رانش بر یکدیگر وارد میکنند. جان دالتون از نظریهٔ اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده، استفاده کرد. در اثر تلاش آمادئو آووگادرو در سدهٔ ۱۹ میلادی، دانشمندان توانستند تفاوت میان اتمها و مولکولها را درک کنند. در روزگار جدید، اتمها به صورت تجربی مشاهده شدهاند. در آزمایشها نیز مشخص گردیده است که اتمها خود از ذرات کوچکتری ساخته شدهاند. در مرکز اتم، یک هستهٔ کوچک مرکزی مثبت متشکل از ذرات هستهای (پروتونها و نوترونها)، و بقیه اتم فقط از پوستههای موجدار الکترون تشکیل شده است. معمولاً اتمهای با داشتن تعداد مساوی الکترون و پروتون، از نظر الکتریکی خنثی هستند.
اتمها عموماً بر حسب عدد اتمی که متناسب با تعداد پروتونهای آن اتم است، ردهبندی میشوند. برای مثال، اتمهای کربن اتمهایی هستند که شش پروتون دارند. تمام اتمهای با عدد اتمی یکسان، دارای ویژگیهای فیزیکی یکسان بوده و واکنش شیمیایی یکسان از خود نشان میدهند. انواع گوناگون اتمها در جدول تناوبی فهرست شدهاند. اتمهای دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (به علت تعداد متفاوت نوترونهای آنها) ایزوتوپ نامیده میشوند.
سادهترین اتم، اتم هیدروژن است که عدد اتمی آن یک است و یک پروتون و یک الکترون دارد. این اتم در بررسی موضوعات علمی، بویژه در آغاز شکلگیری نظریهٔ کوانتوم، بسیار مورد توجه بوده است.
واکنش شیمیایی اتمها عمدتاً وابسته به آثار متقابل الکترونهای آنهاست. بویژه الکترونهایی که در بیرونیترین لایهٔ اتمی قرار دارند به نام الکترونهای ظرفیتی، بیشترین اثر را در واکنشهای شیمیایی نشان میدهند. الکترونهای مرکزی (یعنی آنهایی که در لایهٔ بیرونی نیستند) نیز موثرند ولی به علت وجود بار مثبت هستهٔ اتمی، نقششان ثانوی است.
اتمها گرایش زیادی به تکمیل لایهٔ الکترونی بیرونی خود (یا تخلیهٔ کامل آن) دارند، لایهٔ خارجی هیدروژن و هلیوم ظرفیت دو الکترون و در اتمهای دیگر ظرفیت هشت الکترون را دارند. این عمل با استفادهٔ مشترک از الکترونهای اتمهای مجاور و یا با جدا کردن کامل الکترونها از اتمهای دیگر فراهم میشود. هنگامی که الکترونها در مشارکت اتمها قرار میگیرند، یک پیوند کووالانسی میان دو اتم تشکیل میشود. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی هستند
بمب اتمی سلاحی است که نیروی آن از انرژی اتمی و بر اثر شکاف هسته (فیسیون ) اتمهای پلوتونیوم یا اورانیوم ایجاد می شود .در فرآیند شکافت هسته ای ، اتمهای ناپایدار شکافته و به اتمهای سبکتر تبدیل می شوند .
نخستین بمب از این نوع ، در سال 1945 م در ایالات نیو مکزیکو در ایالات متحده آمریکا آزمایش شد . این بمب ، انفجاری با قدرت 19 کیلو تن ایجاد کرد ( یک کیلو تن برابر است با انرژی اتمی آزاد شده 190 تن ماده منفجره تی . ان . تی ) انفجار بمب اتمی موج بسیار نیرومند پرتوهای شدید نورانی ، تشعشعات نفوذ کننده اشعه گاما و نوترونها و پخش شدن مواد رادیو اکتیو را همراه دارد . انفجار بمب اتمی چندین هزار میلیارد کالری حرارت را در چند میلیونیوم ثانیه ایجاد می کند .
این دمای چند میلیون درجه ای با فشار بسیار زیاد تا فاصله 1200 متری از مرکز انفجار به افراد بدون پوشش حفاظتی صدمه می زند و سبب مرگ و بیماری انسان و جانوران می شود . همچنین زمین ، هوا آب و همه چیز را به مواد رادیو اکتیو آلوده می کند .
بمب های اتمی شامل نیروهای قوی و ضعیفی اند که این نیروها هسته یک اتم را به ویژه اتم هایی که هسته های ناپایداری دارند، در جای خود نگه می دارند. اساسا دو شیوه بنیادی برای آزادسازی انرژی از یک اتم وجود دارد: 1- شکافت هسته ای: می توان هسته یک اتم را با یک نوترون به دو جزء کوچک تر تقسیم کرد. این همان شیوه ای است که در مورد ایزوتوپ های اورانیوم (یعنی اورانیوم 235 و اورانیوم 233) به کار می رود.
برای تولید یک بمب اتمی موارد زیر نیاز است:
یک منبع سوخت که قابلیت شکافت یا همجوشی را داشته باشد.
دستگاهی که همچون ماشه آغازگر حوادث باشد.
راهی که به کمک آن بتوان بیشتر سوخت را پیش از آنکه انفجار رخ دهد دچار شکافت یا همجوشی کرد.
در اولین بمب های اتمی از روش شکافت استفاده می شد. اما امروزه بمب های همجوشی از فرآیند همجوشی به عنوان ماشه آغازگر استفاده می کنند.بمب های شکافتی (فیزیونی): یک بمب شکافتی از ماده ای مانند اورانیوم 235 برای خلق یک انفجار هسته ای استفاده می کند. اورانیوم 235 ویژگی منحصر به فردی دارد که آن را برای تولید هم انرژی هسته ای و هم بمب هسته ای مناسب می کند. اورانیوم 235 یکی از نادر موادی است که می تواند زیر شکافت القایی قرار بگیرد.اگر یک نوترون آزاد به هسته اورانیوم 235 برود،هسته بی درنگ نوترون را جذب کرده و بی ثبات شده در یک چشم به هم زدن شکسته می شود. این باعث پدید آمدن دو اتم سبک تر و آزادسازی دو یا سه عدد نوترون می شود که تعداد این نوترون ها بستگی به چگونگی شکسته شدن هسته اتم اولیه اورانیوم 235 دارد. دو اتم جدید به محض اینکه در وضعیت جدید تثبیت شدند از خود پرتو گاما ساطع می کنند. درباره این نحوه شکافت القایی سه نکته وجود دارد که موضوع را جالب می کند.
1 - احتمال اینکه اتم اورانیوم 235 نوترونی را که به سمتش است، جذب کند، بسیار بالا است. در بمبی که به خوبی کار می کند، بیش از یک نوترون از هر فرآیند فیزیون به دست می آید که خود این نوترون ها سبب وقوع فرآیندهای شکافت بعدی اند. این وضعیت اصطلاحا «ورای آستانه بحران» نامیده می شود.
2 - فرآیند جذب نوترون و شکسته شدن متعاقب آن بسیار سریع و در حد پیکو ثانیه (12-10 ثانیه) رخ می دهد.
3 - حجم عظیم و خارق العاده ای از انرژی به صورت گرما و پرتو گاما به هنگام شکسته شدن هسته آزاد می شود. انرژی آزاد شده از یک فرآیند شکافت به این علت است که محصولات شکافت و نوترون ها وزن کمتری از اتم اورانیوم 235 دارند. این تفاوت وزن نمایان گر تبدیل ماده به انرژی است که به واسطه فرمول معروف mc2= E محاسبه می شود. حدود نیم کیلوگرم اورانیوم غنی شده به کار رفته در یک بمب هسته ای برابر با چندین میلیون گالن بنزین است. نیم کیلوگرم اورانیوم غنی شده انداز ه ای معادل یک توپ تنیس دارد. در حالی که یک میلیون گالن بنزین در مکعبی که هر ضلع آن 17 متر (ارتفاع یک ساختمان 5 طبقه) است، جا می گیرد. حالا بهتر می توان انرژی آزاد شده از مقدار کمی اورانیوم 235 را متصور شد.برای اینکه این ویژگی های اروانیوم 235 به کار آید باید اورانیوم را غنی کرد. اورانیوم به کار رفته در سلاح های هسته ای حداقل باید شامل نود درصد اورانیوم 235 باشد.در یک بمب شکافتی، سوخت به کار رفته را باید در توده هایی که وضعیت «زیر آستانه بحران» دارند، نگه داشت. این کار برای جلوگیری از انفجار نارس و زودهنگام ضروری است. تعریف توده ای که در وضعیت «آستانه بحران» قرار داد چنین است: حداقل توده از یک ماده با قابلیت شکافت که برای رسیدن به واکنش شکافت هسته ای لازم است. این جداسازی مشکلات زیادی را برای طراحی یک بمب شکافتی با خود به همراه می آورد که باید حل شود.
1 - دو یا بیشتر از دو توده «زیر آستانه بحران» برای تشکیل توده «ورای آستانه بحران» باید در کنار هم آورده شوند که در این صورت موقع انفجار به نوترون بیش از آنچه که هست برای رسیدن به یک واکنش شکافتی، نیاز پیدا خواهد شد.
2 - نوترون های آزاد باید در یک توده «ورای آستانه بحران» القا شوند تا شکافت آغاز شود.
3 - برای جلوگیری از ناکامی بمب باید هر مقدار ماده که ممکن است پیش از انفجار وارد مرحله شکافت شود برای تبدیل توده های «زیر آستانه بحران» به توده هایی «ورای آستانه بحران» از دو تکنیک «چکاندن ماشه» و «انفجار از درون» استفاده می شود.تکنیک «چکاندن ماشه» ساده ترین راه برای آوردن توده های «زیر بحران» به همدیگر است. بدین صورت که یک تفنگ توده ای را به توده دیگر شلیک می کند. یک کره تشکیل شده از اورانیوم 235 به دور یک مولد نوترون ساخته می شود. گلوله ای از اورانیوم 235 در یک انتهای تیوپ درازی که پشت آن مواد منفجره جاسازی شده، قرار داده می شود.کره یاد شده در انتهای دیگر تیوپ قرار می گیرد. یک حسگر حساس به فشار ارتفاع مناسب را برای انفجار چاشنی و بروز حوادث زیر تشخیص می دهد:
1 - انفجار مواد منفجره و در نتیجه شلیک گلوله در تیوپ
2 - برخورد گلوله به کره و مولد و در نتیجه آغاز واکنش شکافت
3 - انفجار بمب
در «پسر بچه» بمبی که در سال های پایانی جنگ جهانی دوم بر شهر هیروشیما انداخته شد، تکنیک «چکاندن ماشه» به کار رفته بود. این بمب 5/14 کیلو تن برابر با 500/14 تن TNT بازده و 5/1 درصد کارآیی داشت. یعنی پیش از انفجار تنها 5/1 درصد ازماده مورد نظر شکافت پیدا کرد.
در همان ابتدای «پروژه منهتن»، برنامه سری آمریکا در تولید بمب اتمی، دانشمندان فهمیدند که فشردن توده ها به همدیگر و به یک کره با استفاده از انفجار درونی می تواند راه مناسبی برای رسیدن به توده «ورای آستانه بحران» باشد. البته این تفکر مشکلات زیادی به همراه داشت. به خصوص این مسئله مطرح شد که چگونه می توان یک موج شوک را به طور یکنواخت، مستقیما طی کره مورد نظر، هدایت و کنترل کرد؟افراد تیم پروژه «منهتن» این مشکلات را حل کردند. بدین صورت، تکنیک «انفجار از درون» خلق شد. دستگاه انفجار درونی شامل یک کره از جنس اورانیوم 235 و یک بخش به عنوان هسته است که از پولوتونیوم 239 تشکیل شده و با مواد منفجره احاطه شده است. وقتی چاشنی بمب به کار بیفتد حوادث زیر رخ می دهند:
1 - انفجار مواد منفجره موج شوک ایجاد می کند.
2 - موج شوک بخش هسته را فشرده می کند.
3 - فرآیند شکافت شروع می شود.
4 - بمب منفجر می شود.
در «مرد گنده» بمبی که در سال های پایانی جنگ جهانی دوم بر شهر ناکازاکی انداخته شد، تکنیک «انفجار از درون» به کار رفته بود. بازده این بمب 23 کیلو تن و کارآیی آن 17درصد بود.شکافت معمولا در 560 میلیاردم ثانیه رخ می دهد.بمب های همجوشی: بمب های همجوشی کار می کردند ولی کارآیی بالایی نداشتند. بمب های همجوشی که بمب های «ترمونوکلئار» هم نامیده می شوند، بازده و کارآیی به مراتب بالاتری دارند. برای تولید بمب همجوشی باید مشکلات زیر حل شود:دوتریوم و تریتیوم مواد به کار رفته در سوخت همجوشی هر دو گازند و ذخیره کردنشان دشوار است. تریتیوم هم کمیاب است و هم نیمه عمر کوتاهی دارد بنابراین سوخت بمب باید همواره تکمیل و پر شود.دوتریوم و تریتیوم باید به شدت در دمای بالا برای آغاز واکنش همجوشی فشرده شوند. در نهایت «استانسیلا اولام» دریافت که بیشتر پرتو به دست آمده از یک واکنش فیزیون، اشعه X است که این اشعه X می تواند با ایجاد درجه حرارت بالا و فشار زیاد مقدمات همجوشی را آماده کند. بنابراین با به کارگیری بمب شکافتی در بمب همجوشی مشکلات بسیاری حل شد. در یک بمب همجوشی حوادث زیر رخ می دهند:
1 - بمب شکافتی با انفجار درونی ایجاد اشعه X می کند.
2 - اشعه X درون بمب و در نتیجه سپر جلوگیری کننده از انفجار نارس را گرم می کند.
3 - گرما باعث منبسط شدن سپر و سوختن آن می شود. این کار باعث ورود فشار به درون لیتیوم - دوتریوم می شود.
4 – لیتیوم - دوتریوم 30 برابر بیشتر از قبل تحت فشار قرار می گیرند.
5 - امواج شوک فشاری واکنش شکافتی را در میله پولوتونیومی آغاز می کند.
6 - میله در حال شکافت از خود پرتو، گرما و نوترون می دهد.
7 - نوترون ها به سوی لیتیوم - دوتریوم رفته و با چسبیدن به لیتیوم ایجاد تریتیوم می کند.
8 - ترکیبی از دما و فشار برای وقوع واکنش همجوشی تریتیوم - دوتریوم ودوتریوم - دوتریوم و ایجاد پرتو، گرما و نوترون بیشتر، بسیار مناسب است.
9 - نوترون های آزاد شده از واکنش های همجوشی باعث القای شکافت در قطعات اورانیوم 238 که در سپر مورد نظر به کار رفته بود، می شود.
10 - شکافت قطعات اروانیومی ایجاد گرما و پرتو بیشتر می کند.
11 - بمب منفجر شود.
(1812-1870) Charles Dickens
is considered to be one of the greatest English novelists of the Victorian period. Dickens's works are characterized by attacks on social evils, injustice, and hypocrisy.
Charles Dickens was born in Landport, Hampshire on February 7, 1812. His father was a clerk in the navy pay office, who was well paid but often ended up in financial troubles. In 1814 Dickens moved to
In 1824-27 Dickens studied at
Dickens's career as a writer of fiction started in 1833 when his short stories and essays appeared in periodicals. His Sketches By Boz and The Pickwick Papers were published in 1836.In the same year he married the daughter of his friend George Hogarth, Catherine Hogarth.
The Pickwick Papers were stories about a group of rather odd individuals and their travels to Ipswich,
Among his later works are David Copperfield (1849-50), where Dickens used his own personal experiences of work in a factory, Bleak House (1852-53), A Tale Of Two Cities (1859), set in the years of the French Revolution and Great Expectations (1860-61)
From the 1840s Dickens spent much time traveling and campaigning against many of the social evils of his time. In addition he gave talks and reading, wrote pamphlets, plays, and letters. In the 1850s Dickens was founding editor of Household Words and its successor All the Year Round (1859-70). In 1844-45 he lived in
From 1860 Dickens lived at
ممنون از پیام ، فرهاد و آیدی «بسیجی مخلص رهبر» که خودشو هنوز بهم معرفی نکرده
606-دوتا مازندرانی میرن خارج...یه تیکه ناز میبینن؛ میگن:کیجا...کیجا گل تره بخره...
دختره میگه : گی بخرین...اینجه هم ول نکنین...؟
607-وقتی پسر میره خواستگاری میگه : اومدم از باغچه شما گل بچینم...
اگه دختر بره خواستگاری میگه : اومدم شلنگتونو ببرم گلم رو آب بدم....!!!
608-یه بار مورچه ها به خونه یه اصفهانیه حمله می کنند . بعد چند روز از گشنگی می میرند.
609-به رشتی میگند روی هم رفته شما چند تا بچه دارید میگه: ما رو هم نرفته 4 تا بچه داریم!!!
610-اصفهانیه با دوستاش می خواستند برند پیکنیک. هر کدوم مسئولیت آوردن یه وسیله را به عهده می گیرن. نوبت به اصفهانیه که میرسه. می گه دوستان شما شام و نهار و ... را بیارید. منم داداشمو میارم
611- اصفهانیه می گن با کالسکه جمله بساز می گه این میوا کالس که
612-بدهکارا به رشتیه فشار می آرن رشتیه زن دوم می گیره
613-ترکه رفته بود زیارت امام رضا . بعد از زیارت دستش را برای احترام روی سینه اش گذاشت و عقب عقب آمد بیرون. یه دفعه دید که خورده به یه چیزی . نیگاه کرد ، دید که یه تابلو است و روش نوشته: تبریز 5 کیلومتر
614-به یه اصفهانیه می گن ده تا میوه نام ببر که آخرش س باشه. اصفهانیه می گه سیبس خیارس گلابیس هلوس گوجس ...
615-یه نفر با یه اصفهانی دست به یقه میشه.اصفهانی بجای عمل متقابل التماس کنان با لهجه شیرین اصفهانی میگه «آقا شوما را به خدا یقمو ول کنین آ گوشمو بیگیرین.آخه یقم پاره میشد»
ممنون از عسل و فرهاد بابت جوکها و آفلاینهاشون.
615- به یکی میگن با ماتیز جمله بساز :میگه دزد اومد خونه ما نتونست دزدی کنه گرفتیمش !!میگن اینکه ماتیز نداشت :میگه خوب ماتیز بودیم دیگه
616-ترکه میره خونه بخره طرف میگه هم استخر داره هم جگوزی
ترکه میگه: عجب ما قبلا همین جوری گوز میدادیم حالا جا شم مشخصه
617-میدونی فایده این شلوار کوتاه که دخترا پاشون میکنن چیه
این اقایون یه ذره سر به زیر میشن
618-به غضنفر میگن شما ایمیل دارید؟میگه نه خیلی ممنون الان ناهار خوردم!
619-توی پارک های قزوین نوشته شده: بچه ها گل بچینید
620-اگر یه مرد در ماشین رو برای خانومش باز کنه میشه 4 تا نتیجه گرفت: .ماشین تازه هست 2.زنش تازه هست 3.طرف زنش نیست 4.مرد اسکل هست
621-جدیدترین جمله عاشقانه : انرژی هسته ای من تویی
622-یه جوجه تیغی با یه کیوی داشته میرفته، ازش میپرسن: این کیه؟ میگه: داداشمه، سربازه
623-یارو هر روز زنشو کتک میزده آخرش یه روز زنه شاکی میشه میره خونه باباش باباشم میگیره دختر شو حسابی کتک میزنه میگه برو به شوهرت بگو اگه تو دختر منو میزنی منم زنتو میزنم
624-به عربه میگن بگو گچ ! هنگ میکنه
625-به ترکه می گن بچه کجایی؟می گه : بچه تهران .
می گن: کجای تهران؟ می گه:کیلومتر 700 جاده تهران_ اردبیل
626-فحشهای عربی: از جلو چشمام خفهشو، کثافت مرض، پاتو از رو بوق بردار، گردن درازی میکنی؟
627- نفرین زنها به همدیگه :
الهی کف پات رنگ آسمون رو نبینه !!!!!